memory/src/memory/common/llms/openai_provider.py
2025-11-02 23:49:50 +01:00

447 lines
15 KiB
Python

"""OpenAI LLM provider implementation."""
import json
import logging
from typing import Any, AsyncIterator, Iterator
import openai
from memory.common.llms.base import (
BaseLLMProvider,
ImageContent,
MCPServer,
LLMSettings,
Message,
StreamEvent,
TextContent,
ToolDefinition,
ToolResultContent,
ToolUseContent,
Usage,
)
logger = logging.getLogger(__name__)
class OpenAIProvider(BaseLLMProvider):
"""OpenAI LLM provider with streaming and tool support."""
provider = "openai"
# Models that use max_completion_tokens instead of max_tokens
# These are reasoning models with different parameter requirements
NON_REASONING_MODELS = {"gpt-4o"}
def __init__(self, api_key: str, model: str):
"""
Initialize the OpenAI provider.
Args:
api_key: OpenAI API key
model: Model identifier
"""
super().__init__(api_key, model)
self._async_client: openai.AsyncOpenAI | None = None
def _is_reasoning_model(self) -> bool:
"""
Check if the current model is a reasoning model (o1 series).
Reasoning models have different parameter requirements:
- Use max_completion_tokens instead of max_tokens
- Don't support temperature (always uses temperature=1)
- Don't support top_p
- Don't support system messages via system parameter
"""
return self.model.lower() not in self.NON_REASONING_MODELS
def _initialize_client(self) -> openai.OpenAI:
"""Initialize the OpenAI client."""
return openai.OpenAI(api_key=self.api_key)
@property
def async_client(self) -> openai.AsyncOpenAI:
"""Lazy-load the async client."""
if self._async_client is None:
self._async_client = openai.AsyncOpenAI(api_key=self.api_key)
return self._async_client
def _convert_text_content(self, content: TextContent) -> dict[str, Any]:
"""Convert TextContent to OpenAI format."""
return {"type": "text", "text": content.text}
def _convert_image_content(self, content: ImageContent) -> dict[str, Any]:
"""Convert ImageContent to OpenAI image_url format."""
encoded_image = self.encode_image(content.image)
image_part: dict[str, Any] = {
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{encoded_image}"},
}
if content.detail:
image_part["image_url"]["detail"] = content.detail
return image_part
def _convert_tool_use_content(self, content: ToolUseContent) -> dict[str, Any]:
"""Convert ToolUseContent to provider format. Override for custom format."""
return {
"id": content.id,
"type": "function",
"function": {
"name": content.name,
"arguments": json.dumps(content.input),
},
}
def _convert_tool_result_content(
self, content: ToolResultContent
) -> dict[str, Any]:
"""Convert ToolResultContent to provider format. Override for custom format."""
return {
"role": "tool",
"tool_call_id": content.tool_use_id,
"content": content.content,
}
def _convert_messages(self, messages: list[Message]) -> list[dict[str, Any]]:
"""
Convert messages to OpenAI format.
OpenAI has special requirements:
- ToolResultContent creates separate "tool" role messages
- ToolUseContent becomes tool_calls field on assistant messages
- One input Message can produce multiple output messages
Returns:
Flat list of OpenAI-formatted message dicts
"""
openai_messages: list[dict[str, Any]] = []
for message in messages:
# Handle simple string content
if isinstance(message.content, str):
openai_messages.append(
{"role": message.role.value, "content": message.content}
)
continue
# Handle multi-part content
content_parts: list[dict[str, Any]] = []
tool_calls_list: list[dict[str, Any]] = []
for item in message.content:
if isinstance(item, ToolResultContent):
openai_messages.append(self._convert_tool_result_content(item))
elif isinstance(item, ToolUseContent):
tool_calls_list.append(self._convert_tool_use_content(item))
else:
content_parts.append(self._convert_message_content(item))
if content_parts or tool_calls_list:
msg_dict: dict[str, Any] = {"role": message.role.value}
if content_parts:
msg_dict["content"] = content_parts
elif tool_calls_list:
# Assistant messages with tool calls need content field (use empty string)
msg_dict["content"] = ""
if tool_calls_list:
msg_dict["tool_calls"] = tool_calls_list
openai_messages.append(msg_dict)
return openai_messages
def _convert_tool(self, tool: ToolDefinition) -> dict[str, Any]:
"""
Convert our tool definitions to OpenAI format.
Args:
tool: Tool definition
Returns:
Tool in OpenAI format
"""
return {
"type": "function",
"function": {
"name": tool.name,
"description": tool.description,
"parameters": tool.input_schema,
},
}
def _build_request_kwargs(
self,
messages: list[Message],
system_prompt: str | None,
tools: list[ToolDefinition] | None,
mcp_servers: list[MCPServer] | None,
settings: LLMSettings,
stream: bool = False,
) -> dict[str, Any]:
"""
Build common request kwargs for API calls.
Args:
messages: Conversation history
system_prompt: Optional system prompt
tools: Optional list of tools
mcp_servers: Optional list of MCP servers
settings: LLM settings
stream: Whether to enable streaming
Returns:
Dictionary of kwargs for OpenAI API call
"""
openai_messages = self._convert_messages(messages)
is_reasoning = self._is_reasoning_model()
# Log info for reasoning models on first use
if is_reasoning:
logger.debug(
f"Using reasoning model {self.model}: "
"max_completion_tokens will be used, temperature/top_p ignored"
)
# Reasoning models (o1) don't support system parameter
# System message must be added as a developer message instead
if system_prompt:
if is_reasoning:
# For o1 models, add system prompt as a developer message
openai_messages.insert(
0, {"role": "developer", "content": system_prompt}
)
else:
# For other models, add as system message
openai_messages.insert(0, {"role": "system", "content": system_prompt})
# Reasoning models use max_completion_tokens instead of max_tokens
max_tokens_key = "max_completion_tokens" if is_reasoning else "max_tokens"
kwargs: dict[str, Any] = {
"model": self.model,
"messages": openai_messages,
max_tokens_key: settings.max_tokens,
}
# Reasoning models don't support temperature or top_p
if not is_reasoning:
kwargs["temperature"] = settings.temperature
kwargs["top_p"] = settings.top_p
if stream:
kwargs["stream"] = True
if settings.stop_sequences:
kwargs["stop"] = settings.stop_sequences
if tools:
kwargs["tools"] = self._convert_tools(tools)
kwargs["tool_choice"] = "auto"
return kwargs
def _parse_and_finalize_tool_call(
self, tool_call: dict[str, Any]
) -> dict[str, Any]:
"""
Parse the accumulated tool call arguments and prepare for yielding.
Args:
tool_call: Tool call dict with 'arguments' field (JSON string)
Returns:
Tool call dict with parsed 'input' field (dict)
"""
try:
tool_call["input"] = json.loads(tool_call["arguments"])
except json.JSONDecodeError as e:
logger.warning(
f"Failed to parse tool arguments '{tool_call['arguments']}': {e}"
)
tool_call["input"] = {}
del tool_call["arguments"]
return tool_call
def _handle_stream_chunk(
self,
chunk: Any,
current_tool_call: dict[str, Any] | None,
) -> tuple[list[StreamEvent], dict[str, Any] | None]:
"""
Handle a single streaming chunk and return events and updated tool state.
Args:
chunk: Streaming chunk from OpenAI
current_tool_call: Current tool call being accumulated (or None)
Returns:
Tuple of (list of StreamEvents to yield, updated current_tool_call)
"""
events: list[StreamEvent] = []
# Handle usage information (comes in final chunk with empty choices)
if hasattr(chunk, "usage") and chunk.usage:
usage = chunk.usage
self.log_usage(
Usage(
input_tokens=usage.prompt_tokens,
output_tokens=usage.completion_tokens,
total_tokens=usage.total_tokens,
)
)
if not chunk.choices:
return events, current_tool_call
delta = chunk.choices[0].delta
# Handle text content
if delta.content:
events.append(StreamEvent(type="text", data=delta.content))
# Handle tool calls
if delta.tool_calls:
for tool_call in delta.tool_calls:
if tool_call.id:
# New tool call starting
if current_tool_call:
# Yield the previous one with parsed input
finalized = self._parse_and_finalize_tool_call(
current_tool_call
)
events.append(StreamEvent(type="tool_use", data=finalized))
current_tool_call = {
"id": tool_call.id,
"name": tool_call.function.name or "",
"arguments": tool_call.function.arguments or "",
}
elif current_tool_call and tool_call.function.arguments:
# Continue building the current tool call
current_tool_call["arguments"] += tool_call.function.arguments
# Check if stream is finished
if chunk.choices[0].finish_reason:
if current_tool_call:
# Parse the final tool call arguments
finalized = self._parse_and_finalize_tool_call(current_tool_call)
events.append(StreamEvent(type="tool_use", data=finalized))
current_tool_call = None
return events, current_tool_call
def generate(
self,
messages: list[Message],
system_prompt: str | None = None,
tools: list[ToolDefinition] | None = None,
mcp_servers: list[MCPServer] | None = None,
settings: LLMSettings | None = None,
) -> str:
"""Generate a non-streaming response."""
settings = settings or LLMSettings()
kwargs = self._build_request_kwargs(
messages, system_prompt, tools, mcp_servers, settings, stream=False
)
try:
response = self.client.chat.completions.create(**kwargs)
usage = response.usage
self.log_usage(
Usage(
input_tokens=usage.prompt_tokens,
output_tokens=usage.completion_tokens,
total_tokens=usage.total_tokens,
)
)
return response.choices[0].message.content or ""
except Exception as e:
logger.error(f"OpenAI API error: {e}")
raise
def stream(
self,
messages: list[Message],
system_prompt: str | None = None,
tools: list[ToolDefinition] | None = None,
mcp_servers: list[MCPServer] | None = None,
settings: LLMSettings | None = None,
) -> Iterator[StreamEvent]:
"""Generate a streaming response."""
settings = settings or LLMSettings()
kwargs = self._build_request_kwargs(
messages, system_prompt, tools, mcp_servers, settings, stream=True
)
if kwargs.get("stream"):
kwargs["stream_options"] = {"include_usage": True}
try:
stream = self.client.chat.completions.create(**kwargs)
current_tool_call: dict[str, Any] | None = None
for chunk in stream:
events, current_tool_call = self._handle_stream_chunk(
chunk, current_tool_call
)
yield from events
yield StreamEvent(type="done")
except Exception as e:
logger.error(f"OpenAI streaming error: {e}")
yield StreamEvent(type="error", data=str(e))
async def agenerate(
self,
messages: list[Message],
system_prompt: str | None = None,
tools: list[ToolDefinition] | None = None,
mcp_servers: list[MCPServer] | None = None,
settings: LLMSettings | None = None,
) -> str:
"""Generate a non-streaming response asynchronously."""
settings = settings or LLMSettings()
kwargs = self._build_request_kwargs(
messages, system_prompt, tools, mcp_servers, settings, stream=False
)
try:
response = await self.async_client.chat.completions.create(**kwargs)
return response.choices[0].message.content or ""
except Exception as e:
logger.error(f"OpenAI API error: {e}")
raise
async def astream(
self,
messages: list[Message],
system_prompt: str | None = None,
tools: list[ToolDefinition] | None = None,
mcp_servers: list[MCPServer] | None = None,
settings: LLMSettings | None = None,
) -> AsyncIterator[StreamEvent]:
"""Generate a streaming response asynchronously."""
settings = settings or LLMSettings()
kwargs = self._build_request_kwargs(
messages, system_prompt, tools, mcp_servers, settings, stream=True
)
try:
stream = await self.async_client.chat.completions.create(**kwargs)
current_tool_call: dict[str, Any] | None = None
async for chunk in stream:
events, current_tool_call = self._handle_stream_chunk(
chunk, current_tool_call
)
for event in events:
yield event
yield StreamEvent(type="done")
except Exception as e:
logger.error(f"OpenAI streaming error: {e}")
yield StreamEvent(type="error", data=str(e))