Base usage tracker

This commit is contained in:
Daniel O'Connell 2025-11-01 16:22:40 +01:00
parent bcb470db9b
commit 07852f9ee7
4 changed files with 480 additions and 0 deletions

5
AGENTS.md Normal file
View File

@ -0,0 +1,5 @@
# Agent Guidance
- Assume Python 3.10+ features are available; avoid `from __future__ import annotations` unless necessary.
- Treat LLM model identifiers as `<provider>/<model_name>` strings throughout the codebase.
- Prefer straightforward control flow (`if`/`else`) instead of nested ternaries when clarity is improved.

View File

@ -24,6 +24,13 @@ from memory.common.llms.base import (
) )
from memory.common.llms.anthropic_provider import AnthropicProvider from memory.common.llms.anthropic_provider import AnthropicProvider
from memory.common.llms.openai_provider import OpenAIProvider from memory.common.llms.openai_provider import OpenAIProvider
from memory.common.llms.usage_tracker import (
InMemoryUsageTracker,
RateLimitConfig,
TokenAllowance,
UsageBreakdown,
UsageTracker,
)
from memory.common import tokens from memory.common import tokens
__all__ = [ __all__ = [
@ -42,6 +49,11 @@ __all__ = [
"StreamEvent", "StreamEvent",
"LLMSettings", "LLMSettings",
"create_provider", "create_provider",
"InMemoryUsageTracker",
"RateLimitConfig",
"TokenAllowance",
"UsageBreakdown",
"UsageTracker",
] ]
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)

View File

@ -0,0 +1,316 @@
"""LLM usage tracking utilities."""
from collections import defaultdict, deque
from collections.abc import Iterable
from dataclasses import dataclass, field
from datetime import datetime, timedelta, timezone
from threading import Lock
@dataclass(frozen=True)
class RateLimitConfig:
"""Configuration for a single rolling usage window."""
window: timedelta
max_input_tokens: int | None = None
max_output_tokens: int | None = None
max_total_tokens: int | None = None
def __post_init__(self) -> None:
if self.window <= timedelta(0):
raise ValueError("window must be positive")
if (
self.max_input_tokens is None
and self.max_output_tokens is None
and self.max_total_tokens is None
):
raise ValueError(
"At least one of max_input_tokens, max_output_tokens or "
"max_total_tokens must be provided"
)
@dataclass
class UsageEvent:
timestamp: datetime
input_tokens: int
output_tokens: int
@dataclass
class UsageState:
events: deque[UsageEvent] = field(default_factory=deque)
window_input_tokens: int = 0
window_output_tokens: int = 0
lifetime_input_tokens: int = 0
lifetime_output_tokens: int = 0
@dataclass
class TokenAllowance:
"""Represents the tokens that can be consumed right now."""
input_tokens: int | None
output_tokens: int | None
total_tokens: int | None
@dataclass
class UsageBreakdown:
"""Detailed usage statistics for a provider/model pair."""
window_input_tokens: int
window_output_tokens: int
window_total_tokens: int
lifetime_input_tokens: int
lifetime_output_tokens: int
@property
def window_total(self) -> int:
return self.window_total_tokens
@property
def lifetime_total_tokens(self) -> int:
return self.lifetime_input_tokens + self.lifetime_output_tokens
def split_model_key(model: str) -> tuple[str, str]:
if "/" not in model:
raise ValueError(
"model must be formatted as '<provider>/<model_name>'"
)
provider, model_name = model.split("/", maxsplit=1)
if not provider or not model_name:
raise ValueError(
"model must include both provider and model name separated by '/'"
)
return provider, model_name
class UsageTracker:
"""Base class for usage trackers that operate on provider/model keys."""
def __init__(
self,
configs: dict[str, RateLimitConfig],
default_config: RateLimitConfig | None = None,
) -> None:
self._configs = configs
self._default_config = default_config
self._lock = Lock()
# ------------------------------------------------------------------
# Storage hooks
# ------------------------------------------------------------------
def get_state(self, key: str) -> UsageState:
raise NotImplementedError
def iter_state_items(self) -> Iterable[tuple[str, UsageState]]:
raise NotImplementedError
def save_state(self, key: str, state: UsageState) -> None:
"""Persist the given state back to the underlying store."""
del key, state
# ------------------------------------------------------------------
# Public API
# ------------------------------------------------------------------
def record_usage(
self,
model: str,
input_tokens: int,
output_tokens: int,
timestamp: datetime | None = None,
) -> None:
"""Record token usage for the given provider/model pair."""
if input_tokens < 0 or output_tokens < 0:
raise ValueError("Token counts must be non-negative")
timestamp = timestamp or datetime.now(timezone.utc)
split_model_key(model)
key = model
with self._lock:
config = self._get_config(key)
state = self.get_state(key)
state.lifetime_input_tokens += input_tokens
state.lifetime_output_tokens += output_tokens
if config is None:
self.save_state(key, state)
return
state.events.append(UsageEvent(timestamp, input_tokens, output_tokens))
state.window_input_tokens += input_tokens
state.window_output_tokens += output_tokens
self._prune_expired_events(state, config, now=timestamp)
self.save_state(key, state)
def is_rate_limited(
self,
model: str,
timestamp: datetime | None = None,
) -> bool:
"""Return True if the pair currently exceeds its limits."""
allowance = self.get_available_tokens(model, timestamp=timestamp)
if allowance is None:
return False
limits = [
allowance.input_tokens,
allowance.output_tokens,
allowance.total_tokens,
]
return any(limit is not None and limit <= 0 for limit in limits)
def get_available_tokens(
self,
model: str,
timestamp: datetime | None = None,
) -> TokenAllowance | None:
"""Return the current token allowance for the provider/model pair.
If there is no configuration for the pair (or a default configuration),
``None`` is returned to indicate that no limits are enforced.
"""
split_model_key(model)
key = model
with self._lock:
config = self._get_config(key)
if config is None:
return None
state = self.get_state(key)
self._prune_expired_events(state, config, now=timestamp)
self.save_state(key, state)
if config.max_total_tokens is None:
total_remaining = None
else:
total_remaining = config.max_total_tokens - (
state.window_input_tokens + state.window_output_tokens
)
if config.max_input_tokens is None:
input_remaining = None
else:
input_remaining = config.max_input_tokens - state.window_input_tokens
if config.max_output_tokens is None:
output_remaining = None
else:
output_remaining = (
config.max_output_tokens - state.window_output_tokens
)
return TokenAllowance(
input_tokens=clamp_non_negative(input_remaining),
output_tokens=clamp_non_negative(output_remaining),
total_tokens=clamp_non_negative(total_remaining),
)
def get_usage_breakdown(
self, provider: str | None = None, model: str | None = None
) -> dict[str, dict[str, UsageBreakdown]]:
"""Return usage statistics grouped by provider and model."""
with self._lock:
providers: dict[str, dict[str, UsageBreakdown]] = defaultdict(dict)
for key, state in self.iter_state_items():
prov, model_name = split_model_key(key)
if provider and provider != prov:
continue
if model and model != model_name:
continue
window_total = state.window_input_tokens + state.window_output_tokens
breakdown = UsageBreakdown(
window_input_tokens=state.window_input_tokens,
window_output_tokens=state.window_output_tokens,
window_total_tokens=window_total,
lifetime_input_tokens=state.lifetime_input_tokens,
lifetime_output_tokens=state.lifetime_output_tokens,
)
providers[prov][model_name] = breakdown
return providers
def iter_provider_totals(self) -> Iterable[tuple[str, UsageBreakdown]]:
"""Yield aggregated totals for each provider across its models."""
breakdowns = self.get_usage_breakdown()
for provider, models in breakdowns.items():
window_input = sum(b.window_input_tokens for b in models.values())
window_output = sum(b.window_output_tokens for b in models.values())
lifetime_input = sum(b.lifetime_input_tokens for b in models.values())
lifetime_output = sum(b.lifetime_output_tokens for b in models.values())
yield (
provider,
UsageBreakdown(
window_input_tokens=window_input,
window_output_tokens=window_output,
window_total_tokens=window_input + window_output,
lifetime_input_tokens=lifetime_input,
lifetime_output_tokens=lifetime_output,
),
)
# ------------------------------------------------------------------
# Internal helpers
# ------------------------------------------------------------------
def _get_config(self, key: str) -> RateLimitConfig | None:
return self._configs.get(key) or self._default_config
def _prune_expired_events(
self,
state: UsageState,
config: RateLimitConfig,
now: datetime | None = None,
) -> None:
if not state.events:
return
now = now or datetime.now(timezone.utc)
cutoff = now - config.window
for event in tuple(state.events):
if event.timestamp > cutoff:
break
state.events.popleft()
state.window_input_tokens -= event.input_tokens
state.window_output_tokens -= event.output_tokens
state.window_input_tokens = max(state.window_input_tokens, 0)
state.window_output_tokens = max(state.window_output_tokens, 0)
class InMemoryUsageTracker(UsageTracker):
"""Tracks LLM usage for providers and models within a rolling window."""
def __init__(
self,
configs: dict[str, RateLimitConfig],
default_config: RateLimitConfig | None = None,
) -> None:
super().__init__(configs=configs, default_config=default_config)
self._states: dict[str, UsageState] = {}
def get_state(self, key: str) -> UsageState:
return self._states.setdefault(key, UsageState())
def iter_state_items(self) -> Iterable[tuple[str, UsageState]]:
return tuple(self._states.items())
def clamp_non_negative(value: int | None) -> int | None:
if value is None:
return None
return 0 if value < 0 else value

View File

@ -0,0 +1,147 @@
from datetime import datetime, timedelta, timezone
import pytest
from memory.common.llms.usage_tracker import (
InMemoryUsageTracker,
RateLimitConfig,
UsageTracker,
)
@pytest.fixture
def tracker() -> InMemoryUsageTracker:
config = RateLimitConfig(
window=timedelta(minutes=1),
max_input_tokens=1_000,
max_output_tokens=2_000,
max_total_tokens=2_500,
)
return InMemoryUsageTracker(
{
"anthropic/claude-3": config,
"anthropic/haiku": config,
}
)
@pytest.mark.parametrize(
"window, kwargs",
[
(timedelta(minutes=1), {}),
(timedelta(seconds=0), {"max_total_tokens": 1}),
],
)
def test_rate_limit_config_validation(window: timedelta, kwargs: dict[str, int]) -> None:
with pytest.raises(ValueError):
RateLimitConfig(window=window, **kwargs)
def test_allows_usage_within_limits(tracker: InMemoryUsageTracker) -> None:
now = datetime(2024, 1, 1, tzinfo=timezone.utc)
tracker.record_usage("anthropic/claude-3", 100, 200, timestamp=now)
allowance = tracker.get_available_tokens(
"anthropic/claude-3", timestamp=now
)
assert allowance is not None
assert allowance.input_tokens == 900
assert allowance.output_tokens == 1_800
assert allowance.total_tokens == 2_200
def test_rate_limited_when_over_budget(tracker: InMemoryUsageTracker) -> None:
now = datetime(2024, 1, 1, tzinfo=timezone.utc)
tracker.record_usage("anthropic/claude-3", 800, 1_700, timestamp=now)
assert tracker.is_rate_limited("anthropic/claude-3", timestamp=now)
def test_recovers_after_window(tracker: InMemoryUsageTracker) -> None:
now = datetime(2024, 1, 1, tzinfo=timezone.utc)
tracker.record_usage("anthropic/claude-3", 800, 1_700, timestamp=now)
later = now + timedelta(minutes=2)
allowance = tracker.get_available_tokens(
"anthropic/claude-3", timestamp=later
)
assert allowance is not None
assert allowance.input_tokens == 1_000
assert allowance.output_tokens == 2_000
assert allowance.total_tokens == 2_500
assert not tracker.is_rate_limited("anthropic/claude-3", timestamp=later)
def test_usage_breakdown_and_provider_totals(tracker: InMemoryUsageTracker) -> None:
now = datetime(2024, 1, 1, tzinfo=timezone.utc)
tracker.record_usage("anthropic/claude-3", 100, 200, timestamp=now)
tracker.record_usage("anthropic/haiku", 50, 75, timestamp=now)
breakdown = tracker.get_usage_breakdown()
assert "anthropic" in breakdown
assert "claude-3" in breakdown["anthropic"]
claude_usage = breakdown["anthropic"]["claude-3"]
assert claude_usage.window_input_tokens == 100
assert claude_usage.window_output_tokens == 200
provider_totals = dict(tracker.iter_provider_totals())
anthropic_totals = provider_totals["anthropic"]
assert anthropic_totals.window_input_tokens == 150
assert anthropic_totals.window_output_tokens == 275
def test_get_usage_breakdown_filters(tracker: InMemoryUsageTracker) -> None:
now = datetime(2024, 1, 1, tzinfo=timezone.utc)
tracker.record_usage("anthropic/claude-3", 10, 20, timestamp=now)
tracker.record_usage("openai/gpt-4o", 5, 5, timestamp=now)
filtered = tracker.get_usage_breakdown(provider="anthropic")
assert set(filtered.keys()) == {"anthropic"}
assert set(filtered["anthropic"].keys()) == {"claude-3"}
filtered_model = tracker.get_usage_breakdown(model="gpt-4o")
assert set(filtered_model.keys()) == {"openai"}
assert set(filtered_model["openai"].keys()) == {"gpt-4o"}
def test_missing_configuration_records_lifetime_only() -> None:
tracker = InMemoryUsageTracker(configs={})
tracker.record_usage("openai/gpt-4o", 10, 20)
assert tracker.get_available_tokens("openai/gpt-4o") is None
breakdown = tracker.get_usage_breakdown()
usage = breakdown["openai"]["gpt-4o"]
assert usage.window_input_tokens == 0
assert usage.lifetime_input_tokens == 10
def test_default_configuration_is_used() -> None:
default = RateLimitConfig(window=timedelta(minutes=1), max_total_tokens=100)
tracker = InMemoryUsageTracker(configs={}, default_config=default)
tracker.record_usage("anthropic/claude-3", 10, 10)
allowance = tracker.get_available_tokens("anthropic/claude-3")
assert allowance is not None
assert allowance.total_tokens == 80
def test_record_usage_rejects_negative_values(tracker: InMemoryUsageTracker) -> None:
with pytest.raises(ValueError):
tracker.record_usage("anthropic/claude-3", -1, 0)
def test_is_rate_limited_when_only_output_exceeds_limit() -> None:
config = RateLimitConfig(window=timedelta(minutes=1), max_output_tokens=50)
tracker = InMemoryUsageTracker({"openai/gpt-4o": config})
tracker.record_usage("openai/gpt-4o", 0, 50)
assert tracker.is_rate_limited("openai/gpt-4o")
def test_usage_tracker_base_not_instantiable() -> None:
class DummyTracker(UsageTracker):
pass
with pytest.raises(NotImplementedError):
DummyTracker({}).record_usage("provider/model", 1, 1)