mirror of
https://github.com/mruwnik/memory.git
synced 2025-06-28 15:14:45 +02:00
shuffle around search
This commit is contained in:
parent
01ccea2733
commit
06eec621c1
@ -90,6 +90,7 @@ export const ImageResult = ({ filename, tags, metadata }: SearchItem) => {
|
|||||||
<div className="search-result-card">
|
<div className="search-result-card">
|
||||||
<h4>{title}</h4>
|
<h4>{title}</h4>
|
||||||
<Tag tags={tags} />
|
<Tag tags={tags} />
|
||||||
|
<Metadata metadata={metadata} />
|
||||||
<div className="image-container">
|
<div className="image-container">
|
||||||
{mime_type && mime_type?.startsWith('image/') && <img src={`data:${mime_type};base64,${content}`} alt={title} className="search-result-image"/>}
|
{mime_type && mime_type?.startsWith('image/') && <img src={`data:${mime_type};base64,${content}`} alt={title} className="search-result-image"/>}
|
||||||
</div>
|
</div>
|
||||||
@ -115,7 +116,7 @@ export const Metadata = ({ metadata }: { metadata: any }) => {
|
|||||||
return (
|
return (
|
||||||
<div className="metadata">
|
<div className="metadata">
|
||||||
<ul>
|
<ul>
|
||||||
{Object.entries(metadata).map(([key, value]) => (
|
{Object.entries(metadata).filter(([key, value]) => ![null, undefined].includes(value as any)).map(([key, value]) => (
|
||||||
<MetadataItem key={key} item={key} value={value} />
|
<MetadataItem key={key} item={key} value={value} />
|
||||||
))}
|
))}
|
||||||
</ul>
|
</ul>
|
||||||
@ -154,19 +155,19 @@ export const EmailResult = ({ content, tags, metadata }: SearchItem) => {
|
|||||||
}
|
}
|
||||||
|
|
||||||
export const SearchResult = ({ result }: { result: SearchItem }) => {
|
export const SearchResult = ({ result }: { result: SearchItem }) => {
|
||||||
if (result.mime_type.startsWith('image/')) {
|
if (result.mime_type?.startsWith('image/')) {
|
||||||
return <ImageResult {...result} />
|
return <ImageResult {...result} />
|
||||||
}
|
}
|
||||||
if (result.mime_type.startsWith('text/markdown')) {
|
if (result.mime_type?.startsWith('text/markdown')) {
|
||||||
return <MarkdownResult {...result} />
|
return <MarkdownResult {...result} />
|
||||||
}
|
}
|
||||||
if (result.mime_type.startsWith('text/')) {
|
if (result.mime_type?.startsWith('text/')) {
|
||||||
return <TextResult {...result} />
|
return <TextResult {...result} />
|
||||||
}
|
}
|
||||||
if (result.mime_type.startsWith('application/pdf')) {
|
if (result.mime_type?.startsWith('application/pdf')) {
|
||||||
return <PDFResult {...result} />
|
return <PDFResult {...result} />
|
||||||
}
|
}
|
||||||
if (result.mime_type.startsWith('message/rfc822')) {
|
if (result.mime_type?.startsWith('message/rfc822')) {
|
||||||
return <EmailResult {...result} />
|
return <EmailResult {...result} />
|
||||||
}
|
}
|
||||||
console.log(result)
|
console.log(result)
|
||||||
|
@ -109,14 +109,12 @@ async def search_knowledge_base(
|
|||||||
search_filters = SearchFilters(**filters)
|
search_filters = SearchFilters(**filters)
|
||||||
search_filters["source_ids"] = filter_source_ids(modalities, search_filters)
|
search_filters["source_ids"] = filter_source_ids(modalities, search_filters)
|
||||||
|
|
||||||
upload_data = extract.extract_text(query)
|
upload_data = extract.extract_text(query, skip_summary=True)
|
||||||
results = await search(
|
results = await search(
|
||||||
upload_data,
|
upload_data,
|
||||||
previews=previews,
|
previews=previews,
|
||||||
modalities=modalities,
|
modalities=modalities,
|
||||||
limit=limit,
|
limit=limit,
|
||||||
min_text_score=0.4,
|
|
||||||
min_multimodal_score=0.25,
|
|
||||||
filters=search_filters,
|
filters=search_filters,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
from .search import search
|
from .search import search
|
||||||
from .utils import SearchResult, SearchFilters
|
from .types import SearchResult, SearchFilters
|
||||||
|
|
||||||
__all__ = ["search", "SearchResult", "SearchFilters"]
|
__all__ = ["search", "SearchResult", "SearchFilters"]
|
||||||
|
@ -2,13 +2,15 @@
|
|||||||
Search endpoints for the knowledge base API.
|
Search endpoints for the knowledge base API.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
import asyncio
|
||||||
from hashlib import sha256
|
from hashlib import sha256
|
||||||
import logging
|
import logging
|
||||||
|
|
||||||
import bm25s
|
import bm25s
|
||||||
import Stemmer
|
import Stemmer
|
||||||
from memory.api.search.utils import SourceData, AnnotatedChunk, SearchFilters
|
from memory.api.search.types import SearchFilters
|
||||||
|
|
||||||
|
from memory.common import extract
|
||||||
from memory.common.db.connection import make_session
|
from memory.common.db.connection import make_session
|
||||||
from memory.common.db.models import Chunk, ConfidenceScore
|
from memory.common.db.models import Chunk, ConfidenceScore
|
||||||
|
|
||||||
@ -20,7 +22,7 @@ async def search_bm25(
|
|||||||
modalities: set[str],
|
modalities: set[str],
|
||||||
limit: int = 10,
|
limit: int = 10,
|
||||||
filters: SearchFilters = SearchFilters(),
|
filters: SearchFilters = SearchFilters(),
|
||||||
) -> list[tuple[SourceData, AnnotatedChunk]]:
|
) -> list[str]:
|
||||||
with make_session() as db:
|
with make_session() as db:
|
||||||
items_query = db.query(Chunk.id, Chunk.content).filter(
|
items_query = db.query(Chunk.id, Chunk.content).filter(
|
||||||
Chunk.collection_name.in_(modalities),
|
Chunk.collection_name.in_(modalities),
|
||||||
@ -65,21 +67,18 @@ async def search_bm25(
|
|||||||
item_ids[sha256(doc.encode("utf-8")).hexdigest()]: score
|
item_ids[sha256(doc.encode("utf-8")).hexdigest()]: score
|
||||||
for doc, score in zip(results[0], scores[0])
|
for doc, score in zip(results[0], scores[0])
|
||||||
}
|
}
|
||||||
|
return list(item_scores.keys())
|
||||||
|
|
||||||
with make_session() as db:
|
|
||||||
chunks = db.query(Chunk).filter(Chunk.id.in_(item_scores.keys())).all()
|
|
||||||
results = []
|
|
||||||
for chunk in chunks:
|
|
||||||
# Prefetch all needed source data while in session
|
|
||||||
source_data = SourceData.from_chunk(chunk)
|
|
||||||
|
|
||||||
annotated = AnnotatedChunk(
|
async def search_bm25_chunks(
|
||||||
id=str(chunk.id),
|
data: list[extract.DataChunk],
|
||||||
score=item_scores[chunk.id],
|
modalities: set[str] = set(),
|
||||||
metadata=chunk.source.as_payload(),
|
limit: int = 10,
|
||||||
preview=None,
|
filters: SearchFilters = SearchFilters(),
|
||||||
search_method="bm25",
|
timeout: int = 2,
|
||||||
)
|
) -> list[str]:
|
||||||
results.append((source_data, annotated))
|
query = " ".join([c for chunk in data for c in chunk.data if isinstance(c, str)])
|
||||||
|
return await asyncio.wait_for(
|
||||||
return results
|
search_bm25(query, modalities, limit, filters),
|
||||||
|
timeout,
|
||||||
|
)
|
||||||
|
@ -1,65 +1,20 @@
|
|||||||
import base64
|
|
||||||
import io
|
|
||||||
import logging
|
import logging
|
||||||
import asyncio
|
import asyncio
|
||||||
from typing import Any, Callable, Optional, cast
|
from typing import Any, Callable, cast
|
||||||
|
|
||||||
import qdrant_client
|
import qdrant_client
|
||||||
from PIL import Image
|
|
||||||
from qdrant_client.http import models as qdrant_models
|
from qdrant_client.http import models as qdrant_models
|
||||||
|
|
||||||
from memory.common import embedding, extract, qdrant, settings
|
from memory.common import embedding, extract, qdrant
|
||||||
from memory.common.db.connection import make_session
|
from memory.common.collections import (
|
||||||
from memory.common.db.models import Chunk
|
MULTIMODAL_COLLECTIONS,
|
||||||
from memory.api.search.utils import SourceData, AnnotatedChunk, SearchFilters
|
TEXT_COLLECTIONS,
|
||||||
|
)
|
||||||
|
from memory.api.search.types import SearchFilters
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
def annotated_chunk(
|
|
||||||
chunk: Chunk, search_result: qdrant_models.ScoredPoint, previews: bool
|
|
||||||
) -> tuple[SourceData, AnnotatedChunk]:
|
|
||||||
def serialize_item(item: bytes | str | Image.Image) -> str | None:
|
|
||||||
if not previews and not isinstance(item, str):
|
|
||||||
return None
|
|
||||||
if (
|
|
||||||
not previews
|
|
||||||
and isinstance(item, str)
|
|
||||||
and len(item) > settings.MAX_NON_PREVIEW_LENGTH
|
|
||||||
):
|
|
||||||
return item[: settings.MAX_NON_PREVIEW_LENGTH] + "..."
|
|
||||||
elif isinstance(item, str):
|
|
||||||
if len(item) > settings.MAX_PREVIEW_LENGTH:
|
|
||||||
return None
|
|
||||||
return item
|
|
||||||
if isinstance(item, Image.Image):
|
|
||||||
buffer = io.BytesIO()
|
|
||||||
format = item.format or "PNG"
|
|
||||||
item.save(buffer, format=format)
|
|
||||||
mime_type = f"image/{format.lower()}"
|
|
||||||
return f"data:{mime_type};base64,{base64.b64encode(buffer.getvalue()).decode('utf-8')}"
|
|
||||||
elif isinstance(item, bytes):
|
|
||||||
return base64.b64encode(item).decode("utf-8")
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unsupported item type: {type(item)}")
|
|
||||||
|
|
||||||
metadata = search_result.payload or {}
|
|
||||||
metadata = {
|
|
||||||
k: v
|
|
||||||
for k, v in metadata.items()
|
|
||||||
if k not in ["content", "filename", "size", "content_type", "tags"]
|
|
||||||
}
|
|
||||||
|
|
||||||
# Prefetch all needed source data while in session
|
|
||||||
return SourceData.from_chunk(chunk), AnnotatedChunk(
|
|
||||||
id=str(chunk.id),
|
|
||||||
score=search_result.score,
|
|
||||||
metadata=metadata,
|
|
||||||
preview=serialize_item(chunk.data[0]) if chunk.data else None,
|
|
||||||
search_method="embeddings",
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
async def query_chunks(
|
async def query_chunks(
|
||||||
client: qdrant_client.QdrantClient,
|
client: qdrant_client.QdrantClient,
|
||||||
upload_data: list[extract.DataChunk],
|
upload_data: list[extract.DataChunk],
|
||||||
@ -178,15 +133,14 @@ def merge_filters(
|
|||||||
return filters
|
return filters
|
||||||
|
|
||||||
|
|
||||||
async def search_embeddings(
|
async def search_chunks(
|
||||||
data: list[extract.DataChunk],
|
data: list[extract.DataChunk],
|
||||||
previews: Optional[bool] = False,
|
|
||||||
modalities: set[str] = set(),
|
modalities: set[str] = set(),
|
||||||
limit: int = 10,
|
limit: int = 10,
|
||||||
min_score: float = 0.3,
|
min_score: float = 0.3,
|
||||||
filters: SearchFilters = {},
|
filters: SearchFilters = {},
|
||||||
multimodal: bool = False,
|
multimodal: bool = False,
|
||||||
) -> list[tuple[SourceData, AnnotatedChunk]]:
|
) -> list[str]:
|
||||||
"""
|
"""
|
||||||
Search across knowledge base using text query and optional files.
|
Search across knowledge base using text query and optional files.
|
||||||
|
|
||||||
@ -218,9 +172,38 @@ async def search_embeddings(
|
|||||||
found_chunks = {
|
found_chunks = {
|
||||||
str(r.id): r for results in search_results.values() for r in results
|
str(r.id): r for results in search_results.values() for r in results
|
||||||
}
|
}
|
||||||
with make_session() as db:
|
return list(found_chunks.keys())
|
||||||
chunks = db.query(Chunk).filter(Chunk.id.in_(found_chunks.keys())).all()
|
|
||||||
return [
|
|
||||||
annotated_chunk(chunk, found_chunks[str(chunk.id)], previews or False)
|
async def search_chunks_embeddings(
|
||||||
for chunk in chunks
|
data: list[extract.DataChunk],
|
||||||
]
|
modalities: set[str] = set(),
|
||||||
|
limit: int = 10,
|
||||||
|
filters: SearchFilters = SearchFilters(),
|
||||||
|
timeout: int = 2,
|
||||||
|
) -> list[str]:
|
||||||
|
all_ids = await asyncio.gather(
|
||||||
|
asyncio.wait_for(
|
||||||
|
search_chunks(
|
||||||
|
data,
|
||||||
|
modalities & TEXT_COLLECTIONS,
|
||||||
|
limit,
|
||||||
|
0.4,
|
||||||
|
filters,
|
||||||
|
False,
|
||||||
|
),
|
||||||
|
timeout,
|
||||||
|
),
|
||||||
|
asyncio.wait_for(
|
||||||
|
search_chunks(
|
||||||
|
data,
|
||||||
|
modalities & MULTIMODAL_COLLECTIONS,
|
||||||
|
limit,
|
||||||
|
0.25,
|
||||||
|
filters,
|
||||||
|
True,
|
||||||
|
),
|
||||||
|
timeout,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
return list({id for ids in all_ids for id in ids})
|
||||||
|
@ -4,36 +4,70 @@ Search endpoints for the knowledge base API.
|
|||||||
|
|
||||||
import asyncio
|
import asyncio
|
||||||
import logging
|
import logging
|
||||||
|
from collections import defaultdict
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
from sqlalchemy.orm import load_only
|
||||||
from memory.common import extract, settings
|
from memory.common import extract, settings
|
||||||
from memory.common.collections import (
|
from memory.common.db.connection import make_session
|
||||||
ALL_COLLECTIONS,
|
from memory.common.db.models import Chunk, SourceItem
|
||||||
MULTIMODAL_COLLECTIONS,
|
from memory.common.collections import ALL_COLLECTIONS
|
||||||
TEXT_COLLECTIONS,
|
from memory.api.search.embeddings import search_chunks_embeddings
|
||||||
)
|
|
||||||
from memory.api.search.embeddings import search_embeddings
|
|
||||||
|
|
||||||
if settings.ENABLE_BM25_SEARCH:
|
if settings.ENABLE_BM25_SEARCH:
|
||||||
from memory.api.search.bm25 import search_bm25
|
from memory.api.search.bm25 import search_bm25_chunks
|
||||||
|
|
||||||
from memory.api.search.utils import (
|
from memory.api.search.types import SearchFilters, SearchResult
|
||||||
SearchFilters,
|
|
||||||
SearchResult,
|
|
||||||
group_chunks,
|
|
||||||
with_timeout,
|
|
||||||
)
|
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
async def search_chunks(
|
||||||
|
data: list[extract.DataChunk],
|
||||||
|
modalities: set[str] = set(),
|
||||||
|
limit: int = 10,
|
||||||
|
filters: SearchFilters = {},
|
||||||
|
timeout: int = 2,
|
||||||
|
) -> list[Chunk]:
|
||||||
|
funcs = [search_chunks_embeddings]
|
||||||
|
if settings.ENABLE_BM25_SEARCH:
|
||||||
|
funcs.append(search_bm25_chunks)
|
||||||
|
|
||||||
|
all_ids = await asyncio.gather(
|
||||||
|
*[func(data, modalities, limit, filters, timeout) for func in funcs]
|
||||||
|
)
|
||||||
|
all_ids = {id for ids in all_ids for id in ids}
|
||||||
|
|
||||||
|
with make_session() as db:
|
||||||
|
chunks = (
|
||||||
|
db.query(Chunk)
|
||||||
|
.options(load_only(Chunk.id, Chunk.source_id, Chunk.content)) # type: ignore
|
||||||
|
.filter(Chunk.id.in_(all_ids))
|
||||||
|
.all()
|
||||||
|
)
|
||||||
|
db.expunge_all()
|
||||||
|
return chunks
|
||||||
|
|
||||||
|
|
||||||
|
async def search_sources(
|
||||||
|
chunks: list[Chunk], previews: Optional[bool] = False
|
||||||
|
) -> list[SearchResult]:
|
||||||
|
by_source = defaultdict(list)
|
||||||
|
for chunk in chunks:
|
||||||
|
by_source[chunk.source_id].append(chunk)
|
||||||
|
|
||||||
|
with make_session() as db:
|
||||||
|
sources = db.query(SourceItem).filter(SourceItem.id.in_(by_source.keys())).all()
|
||||||
|
return [
|
||||||
|
SearchResult.from_source_item(source, by_source[source.id], previews)
|
||||||
|
for source in sources
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
async def search(
|
async def search(
|
||||||
data: list[extract.DataChunk],
|
data: list[extract.DataChunk],
|
||||||
previews: Optional[bool] = False,
|
previews: Optional[bool] = False,
|
||||||
modalities: set[str] = set(),
|
modalities: set[str] = set(),
|
||||||
limit: int = 10,
|
limit: int = 10,
|
||||||
min_text_score: float = 0.4,
|
|
||||||
min_multimodal_score: float = 0.25,
|
|
||||||
filters: SearchFilters = {},
|
filters: SearchFilters = {},
|
||||||
timeout: int = 2,
|
timeout: int = 2,
|
||||||
) -> list[SearchResult]:
|
) -> list[SearchResult]:
|
||||||
@ -50,56 +84,11 @@ async def search(
|
|||||||
- List of search results sorted by score
|
- List of search results sorted by score
|
||||||
"""
|
"""
|
||||||
allowed_modalities = modalities & ALL_COLLECTIONS.keys()
|
allowed_modalities = modalities & ALL_COLLECTIONS.keys()
|
||||||
|
chunks = await search_chunks(
|
||||||
searches = []
|
data,
|
||||||
if settings.ENABLE_EMBEDDING_SEARCH:
|
allowed_modalities,
|
||||||
searches = [
|
limit,
|
||||||
with_timeout(
|
filters,
|
||||||
search_embeddings(
|
timeout,
|
||||||
data,
|
)
|
||||||
previews,
|
return await search_sources(chunks, previews)
|
||||||
allowed_modalities & TEXT_COLLECTIONS,
|
|
||||||
limit,
|
|
||||||
min_text_score,
|
|
||||||
filters,
|
|
||||||
multimodal=False,
|
|
||||||
),
|
|
||||||
timeout,
|
|
||||||
),
|
|
||||||
with_timeout(
|
|
||||||
search_embeddings(
|
|
||||||
data,
|
|
||||||
previews,
|
|
||||||
allowed_modalities & MULTIMODAL_COLLECTIONS,
|
|
||||||
limit,
|
|
||||||
min_multimodal_score,
|
|
||||||
filters,
|
|
||||||
multimodal=True,
|
|
||||||
),
|
|
||||||
timeout,
|
|
||||||
),
|
|
||||||
]
|
|
||||||
if settings.ENABLE_BM25_SEARCH:
|
|
||||||
searches.append(
|
|
||||||
with_timeout(
|
|
||||||
search_bm25(
|
|
||||||
" ".join(
|
|
||||||
[c for chunk in data for c in chunk.data if isinstance(c, str)]
|
|
||||||
),
|
|
||||||
modalities,
|
|
||||||
limit=limit,
|
|
||||||
filters=filters,
|
|
||||||
),
|
|
||||||
timeout,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
search_results = await asyncio.gather(*searches, return_exceptions=False)
|
|
||||||
all_results = []
|
|
||||||
for results in search_results:
|
|
||||||
if len(all_results) >= limit:
|
|
||||||
break
|
|
||||||
all_results.extend(results)
|
|
||||||
|
|
||||||
results = group_chunks(all_results, previews or False)
|
|
||||||
return sorted(results, key=lambda x: max(c.score for c in x.chunks), reverse=True)
|
|
||||||
|
67
src/memory/api/search/types.py
Normal file
67
src/memory/api/search/types.py
Normal file
@ -0,0 +1,67 @@
|
|||||||
|
from datetime import datetime
|
||||||
|
import logging
|
||||||
|
from typing import Optional, TypedDict, NotRequired, cast
|
||||||
|
|
||||||
|
from memory.common.db.models.source_item import SourceItem
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
from memory.common.db.models import Chunk
|
||||||
|
from memory.common import settings
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class SearchResponse(BaseModel):
|
||||||
|
collection: str
|
||||||
|
results: list[dict]
|
||||||
|
|
||||||
|
|
||||||
|
def elide_content(content: str, max_length: int = 100) -> str:
|
||||||
|
if content and len(content) > max_length:
|
||||||
|
return content[:max_length] + "..."
|
||||||
|
return content
|
||||||
|
|
||||||
|
|
||||||
|
class SearchResult(BaseModel):
|
||||||
|
id: int
|
||||||
|
chunks: list[str]
|
||||||
|
size: int | None = None
|
||||||
|
mime_type: str | None = None
|
||||||
|
content: Optional[str | dict] = None
|
||||||
|
filename: Optional[str] = None
|
||||||
|
tags: list[str] | None = None
|
||||||
|
metadata: dict | None = None
|
||||||
|
created_at: datetime | None = None
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def from_source_item(
|
||||||
|
cls, source: SourceItem, chunks: list[Chunk], previews: Optional[bool] = False
|
||||||
|
) -> "SearchResult":
|
||||||
|
metadata = source.display_contents or {}
|
||||||
|
metadata.pop("content", None)
|
||||||
|
chunk_size = settings.DEFAULT_CHUNK_TOKENS * 4
|
||||||
|
|
||||||
|
return cls(
|
||||||
|
id=cast(int, source.id),
|
||||||
|
size=cast(int, source.size),
|
||||||
|
mime_type=cast(str, source.mime_type),
|
||||||
|
chunks=[elide_content(str(chunk.content), chunk_size) for chunk in chunks],
|
||||||
|
content=elide_content(
|
||||||
|
cast(str, source.content),
|
||||||
|
settings.MAX_PREVIEW_LENGTH
|
||||||
|
if previews
|
||||||
|
else settings.MAX_NON_PREVIEW_LENGTH,
|
||||||
|
),
|
||||||
|
filename=cast(str, source.filename),
|
||||||
|
tags=cast(list[str], source.tags),
|
||||||
|
metadata=metadata,
|
||||||
|
created_at=cast(datetime | None, source.inserted_at),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class SearchFilters(TypedDict):
|
||||||
|
min_size: NotRequired[int]
|
||||||
|
max_size: NotRequired[int]
|
||||||
|
min_confidences: NotRequired[dict[str, float]]
|
||||||
|
observation_types: NotRequired[list[str] | None]
|
||||||
|
source_ids: NotRequired[list[int] | None]
|
@ -1,140 +0,0 @@
|
|||||||
import asyncio
|
|
||||||
import traceback
|
|
||||||
from datetime import datetime
|
|
||||||
import logging
|
|
||||||
from collections import defaultdict
|
|
||||||
from typing import Optional, TypedDict, NotRequired
|
|
||||||
|
|
||||||
from pydantic import BaseModel
|
|
||||||
|
|
||||||
from memory.common import settings
|
|
||||||
from memory.common.db.models import Chunk
|
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
|
||||||
|
|
||||||
|
|
||||||
class AnnotatedChunk(BaseModel):
|
|
||||||
id: str
|
|
||||||
score: float
|
|
||||||
metadata: dict
|
|
||||||
preview: Optional[str | None] = None
|
|
||||||
search_method: str | None = None
|
|
||||||
|
|
||||||
|
|
||||||
class SourceData(BaseModel):
|
|
||||||
"""Holds source item data to avoid SQLAlchemy session issues"""
|
|
||||||
|
|
||||||
id: int
|
|
||||||
size: int | None
|
|
||||||
mime_type: str | None
|
|
||||||
filename: str | None
|
|
||||||
content_length: int
|
|
||||||
contents: dict | str | None
|
|
||||||
created_at: datetime | None
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def from_chunk(chunk: Chunk) -> "SourceData":
|
|
||||||
source = chunk.source
|
|
||||||
display_contents = source.display_contents or {}
|
|
||||||
return SourceData(
|
|
||||||
id=source.id,
|
|
||||||
size=source.size,
|
|
||||||
mime_type=source.mime_type,
|
|
||||||
filename=source.filename,
|
|
||||||
content_length=len(source.content) if source.content else 0,
|
|
||||||
contents={k: v for k, v in display_contents.items() if v is not None},
|
|
||||||
created_at=source.inserted_at,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class SearchResponse(BaseModel):
|
|
||||||
collection: str
|
|
||||||
results: list[dict]
|
|
||||||
|
|
||||||
|
|
||||||
class SearchResult(BaseModel):
|
|
||||||
id: int
|
|
||||||
size: int
|
|
||||||
mime_type: str
|
|
||||||
chunks: list[AnnotatedChunk]
|
|
||||||
content: Optional[str | dict] = None
|
|
||||||
filename: Optional[str] = None
|
|
||||||
tags: list[str] | None = None
|
|
||||||
metadata: dict | None = None
|
|
||||||
created_at: datetime | None = None
|
|
||||||
|
|
||||||
|
|
||||||
class SearchFilters(TypedDict):
|
|
||||||
min_size: NotRequired[int]
|
|
||||||
max_size: NotRequired[int]
|
|
||||||
min_confidences: NotRequired[dict[str, float]]
|
|
||||||
observation_types: NotRequired[list[str] | None]
|
|
||||||
source_ids: NotRequired[list[int] | None]
|
|
||||||
|
|
||||||
|
|
||||||
async def with_timeout(
|
|
||||||
call, timeout: int = 2
|
|
||||||
) -> list[tuple[SourceData, AnnotatedChunk]]:
|
|
||||||
"""
|
|
||||||
Run a function with a timeout.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
call: The function to run
|
|
||||||
timeout: The timeout in seconds
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
return await asyncio.wait_for(call, timeout=timeout)
|
|
||||||
except TimeoutError:
|
|
||||||
logger.warning(f"Search timed out after {timeout}s")
|
|
||||||
return []
|
|
||||||
except Exception as e:
|
|
||||||
traceback.print_exc()
|
|
||||||
logger.error(f"Search failed: {e}")
|
|
||||||
return []
|
|
||||||
|
|
||||||
|
|
||||||
def group_chunks(
|
|
||||||
chunks: list[tuple[SourceData, AnnotatedChunk]], preview: bool = False
|
|
||||||
) -> list[SearchResult]:
|
|
||||||
items = defaultdict(list)
|
|
||||||
source_lookup = {}
|
|
||||||
|
|
||||||
for source, chunk in chunks:
|
|
||||||
items[source.id].append(chunk)
|
|
||||||
source_lookup[source.id] = source
|
|
||||||
|
|
||||||
def get_content(text: str | dict | None) -> str | dict | None:
|
|
||||||
if isinstance(text, str) and len(text) > settings.MAX_PREVIEW_LENGTH:
|
|
||||||
return None
|
|
||||||
return text
|
|
||||||
|
|
||||||
def make_result(source: SourceData, chunks: list[AnnotatedChunk]) -> SearchResult:
|
|
||||||
contents = source.contents or {}
|
|
||||||
tags = []
|
|
||||||
if isinstance(contents, dict):
|
|
||||||
tags = contents.pop("tags", [])
|
|
||||||
content = contents.pop("content", None)
|
|
||||||
else:
|
|
||||||
content = contents
|
|
||||||
contents = {}
|
|
||||||
|
|
||||||
return SearchResult(
|
|
||||||
id=source.id,
|
|
||||||
size=source.size or source.content_length,
|
|
||||||
mime_type=source.mime_type or "text/plain",
|
|
||||||
filename=source.filename
|
|
||||||
and source.filename.replace(
|
|
||||||
str(settings.FILE_STORAGE_DIR).lstrip("/"), "/files"
|
|
||||||
),
|
|
||||||
content=get_content(content),
|
|
||||||
tags=tags,
|
|
||||||
metadata=contents,
|
|
||||||
chunks=sorted(chunks, key=lambda x: x.score, reverse=True),
|
|
||||||
created_at=source.created_at,
|
|
||||||
)
|
|
||||||
|
|
||||||
return [
|
|
||||||
make_result(source, chunks)
|
|
||||||
for source_id, chunks in items.items()
|
|
||||||
for source in [source_lookup[source_id]]
|
|
||||||
]
|
|
@ -368,7 +368,7 @@ class SourceItem(Base):
|
|||||||
return [cls.__tablename__]
|
return [cls.__tablename__]
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def display_contents(self) -> str | dict | None:
|
def display_contents(self) -> dict | None:
|
||||||
payload = self.as_payload()
|
payload = self.as_payload()
|
||||||
payload.pop("source_id", None) # type: ignore
|
payload.pop("source_id", None) # type: ignore
|
||||||
return {
|
return {
|
||||||
|
@ -135,7 +135,7 @@ SUMMARIZER_MODEL = os.getenv("SUMMARIZER_MODEL", "anthropic/claude-3-haiku-20240
|
|||||||
# Search settings
|
# Search settings
|
||||||
ENABLE_EMBEDDING_SEARCH = boolean_env("ENABLE_EMBEDDING_SEARCH", True)
|
ENABLE_EMBEDDING_SEARCH = boolean_env("ENABLE_EMBEDDING_SEARCH", True)
|
||||||
ENABLE_BM25_SEARCH = boolean_env("ENABLE_BM25_SEARCH", True)
|
ENABLE_BM25_SEARCH = boolean_env("ENABLE_BM25_SEARCH", True)
|
||||||
MAX_PREVIEW_LENGTH = int(os.getenv("MAX_PREVIEW_LENGTH", DEFAULT_CHUNK_TOKENS * 8))
|
MAX_PREVIEW_LENGTH = int(os.getenv("MAX_PREVIEW_LENGTH", DEFAULT_CHUNK_TOKENS * 16))
|
||||||
MAX_NON_PREVIEW_LENGTH = int(os.getenv("MAX_NON_PREVIEW_LENGTH", 2000))
|
MAX_NON_PREVIEW_LENGTH = int(os.getenv("MAX_NON_PREVIEW_LENGTH", 2000))
|
||||||
|
|
||||||
# API settings
|
# API settings
|
||||||
|
Loading…
x
Reference in New Issue
Block a user